
NOTES RELATING TO NEWTON SERIES FOR THE RIEMANN ZETA
FUNCTION

LINAS VEPSTAS

ABSTRACT. This paper consists of the extended working notes and observations made
during the development of a joint paper[?] with Philippe Flajolet on the Riemann zeta
function. Most of the core ideas of that paper, of which a majority are due to Flajolet,
are reproduced here; however, the choice of wording used here, and all errors and omis-
sions are my own fault. This set of notes contains considerably more content, although is
looser and sloppier, and is an exploration of tangents, dead-ends, and ideas shooting off in
uncertain directions.

The finite differences or Newton series of certain expressions involving the Riemann
zeta function are explored. These series may be given an asymptotic expansion by con-
verting them to Norlund-Rice integrals and applying saddle-point integration techniques.
Numerical evaluation is used to confirm the appropriateness of the asymptotic expansion.
The results extend on previous results for such series, and a general form for Dirichlet
L-functions is given. Curiously, because successive terms in the asymptotic expansion are
exponentially small, these series lead to simple near-identities. A resemblance to similar
near-identities arising in complex multiplication is noted.

1. INTRODUCTION

The binomial coefficient is implicated in various fractal phenomena, and the Berry con-
jecture [ref] suggests that the zeros of the Riemann zeta function correspond to the chaotic
spectrum of an unknown quantization of some simple chaotic mechanical system. Thus,
on vague and general principles, one might be lead to explore Newton series involving the
Riemann zeta function. Of some curiosity is the series

(1.1) ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n bn
n!

(s)n

where (s)n = s(s−1) · · · (s−n+1) is the falling Pochhammer symbol. Note the general
resemblance to a Taylor’s series, with the Pochhammer symbol taking the place of the
monomial. Such general types of resemblances are the key idea underlying the so-called
“umbral calculus”.

Here, the constants bn play a role analogous to the Stieltjes constants of the Taylor
expansion. The bn have several remarkable properties. Unlike the Stieltjes constants, they
may be written as a finite sum over well-known constants:

(1.2) bn = n(1− γ −Hn−1)− 1
2

+
n∑

k=2

(−)k

(
n
k

)
ζ(k)

for n > 0. Here

(1.3) Hn =
n∑

m=1

1
m
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are the harmonic numbers. The first few values are

b0 =
1
2

(1.4)

b1 = −γ +
1
2

(1.5)

b2 = −2γ − 1
2

+ ζ(2)(1.6)

b3 = −3γ − 2− ζ(3) + 3ζ(2)(1.7)

b4 = −4γ − 23
6

+ ζ(4)− 4ζ(3) + 6ζ(2)(1.8)

Although intermediate terms in the sum become exponentially large, the values themselves
become exponentially small:

bn = O
(
n1/4e−2

√
πn

)

The development of an explicit expression for the asymptotic behavior of bn for n → ∞
is the main focus of this essay. The principal result is that

(1.9) bn =
(

2n
π

)1/4

exp
(
−
√

4πn
)

cos
(√

4πn− 5π
8

)
+O

(
n−1/4e−2

√
πn

)

The method of attack used to obtain this result is to convert the Newton series into
an integral of the Norlund-Rice form[?], which may be evaluated using steepest-descent /
stationary-phase methods [need ref]. These techniques are sufficiently general that they can
be applied to other similar sums that appear in the literature [multiple refs] (See penultimate
section below, where these are reviewed in detail). One of the principal results of this essay
is to apply this asymptotic expansion to the Newton series for the Dirichlet L-functions.
Additional results concern the generalization of bn to b(s) for generalized complex s, so
that b(n) = bn at the integers n.

Another set of sections explore the relationship to the Stieltjes constants, and attempt to
find an asymptotic expansion for these.

The development of the sections below are in no particular order; they follow threads of
thoughts and ideas in various directions.

2. DERIVATION

This section demonstrates the relationship between the Riemann zeta function and the
bn, starting from first principles. First, the values of the bn are derived, and then it is shown
that the resulting series is equivalent to the Riemann zeta function.

The bn may be derived by a straightforward inversion of a binomial transform. Given
any sequence {sn} whatsoever, the binomial transform [ref Knuth concrete math] of this
sequence is another sequence {tn}, given by

tn =
n∑

k=0

(−1)k

(
s
k

)
sk

The binomial transformation is an involution, in that the original series is regained by the
same transform applied a second time:

sn =
n∑

k=0

(−1)k

(
s
k

)
tk
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A demonstration of the above is straight-forward, in part because each sum is finite.
By assuming the sequence for the Riemann zeta at the integers:

ζ(n) =
1

n− 1
+

n∑

k=2

(−1)k

(
n
k

)
bk

and defining

sn = ζ(n)− 1
n− 1

for n ≥ 2, while leaving s0 and s1 temporarily indeterminate, one may invert the series as

bn = s0 − ns1 +
n∑

k=2

(−1)k

(
n
k

)[
ζ(k)− 1

k − 1

]

The harmonic numbers appear as

n∑

k=2

(−1)k

(
n
k

)
1

k − 1
= 1− n+ nHn−1

To complete the process, one need only to make the identification

b0 = s0 = lim
s→0

ζ(s)− 1
s− 1

= ζ(0) + 1 =
1
2

and

s1 = lim
s→1

ζ(s)− 1
s− 1

= γ

Thus, the binomial transform as been demonstrated at the integer values of the zeta func-
tion.

Next, one must prove that the series

1
s− 1

+
∞∑

n=0

(−1)n bn
n!

(
s
k

)

is identical to the Riemann zeta function for all complex values of s. To do this, one
considers the function

f(s) = −ζ(s) +
1

s− 1
+

∞∑
n=0

(−1)n bn
n!

(
s
k

)

and note that f(s) vanishes at all non-negative integers. By Carlson’s theorem (given be-
low), f(s) will vanish everywhere, provided that it can be shown that f(s) is exponentially
bounded in all directions for large |s|, and is exponentially bounded by ec|s|for some real
c < π for s large in the imaginary direction.

XXX this proof should be supplied.

3. GENERATING FUNCTIONS

The ordinary and the exponential generating functions for the coefficients bn are readily
obtained; these are presented in this section.
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Theorem 3.1. The ordinary generating function is given by

β(z) =
∞∑

n=0

bnz
n

=
−1

2(1− z)
+

z

(1− z)2

[
ln(1− z) + ψ

(
1

1− z

)]
(3.1)

where ψ is the digamma function.

Proof. The above may be obtained by straightforward substitution followed by an ex-
change of the order of summation. The harmonic numbers lead to the logarithm via the
identity

ln(1− z) = −
∞∑

k=1

zk

k

while the binomial series re-sums to the digamma function, which has the Taylor’s series

ψ(1 + y) = −γ +
∞∑

n=2

(−1)nζ(n)yn−1

(equation 6.3.14 from Abramowitz and Stegun[?]). ¤

The above simplifies considerably, to

β

(
w − 1
w

)
=
w

2
+ (w − 1)(ψ(w)− lnw)

upon substitution of z = (w − 1)/w.
An exponential generating function is given by

(3.2)
∞∑

n=0

bn
zn

n!
= ez

[
z (1− γ + Ein(z))− 1

2
+

∞∑

k=2

(−z)k

k!
ζ(k)

]

where Ein(z) is the entire exponential integral:

(3.3) Ein(z) = −
∞∑

k=1

1
k

(−z)k

k!
= e−z

∞∑
n=1

Hn
zn

n!

and Hn are the harmonic numbers.

Note. One is left to wonder what the function

(3.4) µ(s;x) =
1

s− 1
+

∞∑
n=0

(−)n

(
s
n

)
bnx

n

might be like; it is presumably related to the Polylogarithm (Jonquiere’s function) XXXX
Do the scratching needed to get the relationship nailed down. Ugh.

4. NUMERICAL ANALYSIS

The series expression for the bn is very conducive to numerical analysis. The values of
the zeta function may be rapidly computed to extremely high precision using the Tchebysh-
eff polynomial technique given by Borwein[?]. Thus, it becomes possible to explore the
behavior of the bn up to n ∼ 5000 with only a moderate investment in coding and com-
puter time. Note, however, that in order to get up to these ranges, computations must be
performed keeping thousands of decimal places of precision, due to the very large values
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TABLE 1. Some values of bn

n bn

0 0.5
1 -0.07721566490153286060651209...
2 -0.00949726295483928474060901...
3 0.001098302680486442197971068...
4 0.001504029222654892992160356...
5 0.000715059124311572276195930...
6 0.000203986913616129918772188...
7 -0.000003382695485446052419661...
8 -0.00005422279825033492206785...

This table shows the first few values of bn. These may be easily calculated to high
precision if desired. As is immediately apparent, these get small quickly.

that the binomial coefficient can take. In the following, calculations were performed using
the GNU Multiple Precision Arithmetic Library [?].

The table 1 shows the numerical values of the first few of these constants. It appears
that the bnare oscillatory, as shown in the figure 4.1. The values are also very rapidly
decreasing, so that to the first order, that |bn| ∼ exp

(−√4πn
)
.

A numeric fit to the oscillatory behavior of the function may be made. An excellent fit
for the k′th zero is provided by

(4.1) q(k) =
π

4
k2 +

9π
16
k − 1

4k
+ c+

r

k − a+ ib
+

r

k − a− ib

where c = 0.44057997, 2/r = 215.08, a = 3.19896 and b = 0.2898. With these parame-
ters, the fit to the zero-crossings for k ≥ 9 is better than a part per million, while describing
the lower crossings to a few parts per hundred. The leading quadratic term in this equation
is easily invertible to give the oscillatory behavior of the bn; the inversion is given by

(4.2) sn = sinπ

(
−9
8
−

√
81
64

+ 4
(n+ 0.44058)

π

)

XXX except this is a mediocre fit all by itself, and needs to be tweaked. To demonstrate
the quality of this fit, the graph 4.2 shows an divided by sn.

Asymptotically, the amplitude of the bn appears to be given by

(4.3) bn ' snn
1/4 exp−

(√
4πn

)

However, a more precise fit is strangely difficult. XXXX The below should be replaced or
removed. An attempt to numerically fit the data with an expression of the form

(4.4) an ' sn exp− (b+ (c+ dn)ε)

results in fit parameters of b = 3.9 ± 1.5 and c = −50 ± 100 and d = 12.87 ± 0.15 and
ε = 0.5 ± 0.007. This fit is not very pleasing; in particular, the true asymptotic behavior
doesn’t seem to set in until n is larger than several hundred, which is unexpectedly high.
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FIGURE 4.1. Graph of the first few values of bn

This figure shows a graph of the first 300 values of bn normalized by a factor of
n−1/4 exp

√
4πn. Oscillation is clearly visible; the period of oscillation is slowly

increasing. The figure also makes clear that the asymptotic behavior is bounded.

5. EXTENSION OF bn TO COMPLEX ARGUMENTS

The bnmay be generalized by taking the parameter n to be a complex number. The
“obvious” and reasonable generalization is

(5.1) b(s) = −sγ +
1
2

+
∞∑

k=2

(−1)k

(
s
k

)[
ζ(k)− 1

k − 1

]

By construction, the function b(s) interpolates the previous series, so that b(n) = bn for
non-negative integers n. This function has a pole at s = −1, and the above series expansion
is convergent only for <s > −1.

One may ask what form the analytic continuation of b(s) to the entire complex plane
may look like. To examine this question, one makes use of two identities.

First, one has

∞∑

k=0

(−x)k

(
s
k

)
= (1− x)s

which holds for |x| < 1 for any s. When s is a positive integer, the sum on the left clearly
vanishes in the limit of x→ 1, because the sum consists of a finite number of terms. That it
also vanishes for any s with <s > 0, follows from Carlson’s theorem. The theorem applies



englishNOTES RELATING TO NEWTON SERIES FOR THE RIEMANN ZETA FUNCTION 7

FIGURE 4.2. Graph of the log of the amplitude an/sn

This figure shows a graph of − log(an/sn) out through n ∼ 2000. It is essentially a graph
of the log of the amplitude of the oscillations of an. Note the absence of any ’blips’ that
would occur if the sinusoidal fit to the data was poor; the sinusoidal curve sn models the

data remarkably well. This figure also illustrates a fit to the amplitude. Specifically, the fit
curve is given by 3 + 3.6

√
n+ 1. Note that this fit fails badly for values of n . 20 and

that for larger n, the fit is only good to 3 + 3.6
√
n+ 1 + log(an/sn) ' 0± 0.5 on

average.
Xxx-this graph should be replaced or removed.

because, for any s, one can has that |s log(1− x)| < π in the limit of x → 1. Thus, for
any s with <s > 0, one has

∞∑

k=2

(−1)k

(
s
k

)
= s− 1

and one may take the right hand side to be the analytic continuation, to the entire complex
plane, of the left hand side.

Another important identity uses the digamma function

ψ(s) =
d

ds
ln Γ(s)

to generalize the harmonic numbers

ψ(n) = Hn−1 − γ
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The digamma has a suitable binomial series [XXX ref for this formula?] valid for s > −1:

ψ(s+ 1) = −γ −
∞∑

k=1

(−1)k

(
s
k

)
1
k

As before, the uniqueness of this expansion may be argued by appeals to Carlson’s theo-
rem. Substituting

1
k

=
1

k + 1
+

1
k(k + 1)

and making use of the previous identity, one can readily show that, for s > 0,
∞∑

k=2

(−1)k

(
s
k

)
1

k − 1
= 1 + s (γ − 1 + ψ(s))

Combining the above, one may write b(s) in a form that is regular on the entire complex
plane

b(s) = −3
2

+ s [2 (1− γ)− ψ(s)] +
∞∑

k=2

(−1)k

(
s
k

)
[ζ(k)− 1]

The sum on the left is entire, having no poles except at infinity, and converges for all
complex values of s. That it is entire follows easily, as the sum is bounded:∣∣∣∣∣

∞∑

k=2

(−1)k

(
s
k

)
[ζ(k)− 1]

∣∣∣∣∣ < 2

∣∣∣∣∣
∞∑

k=2

(
−1

2

)k (
s
k

)
[ζ(k)− 1]

∣∣∣∣∣
≤

∣∣21−s − 2 + s
∣∣

and thus, the sum cannot have any poles for finite s. The digamma is regular and single-
valued on the complex plane, having simple poles at the negative integers; and thus, b(s)
is likewise.

XXXX remove or replace The figure 5.1 illustrates a(s) on the imaginary axis; the
graphic 5.2 illustrates the phase of a(s) in the upper-right complex plane. A numerical
exploration of this function seems to indicate that the only zeros of this function occur on
the real number line.

6. RELATION TO THE STIELTJES CONSTANTS

The standard power series for the Riemann zeta function is written as

(6.1) ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(s− 1)n

where the coefficients γn are known as the Stieltjes constants. The bn can be related to
these by re-expressing the binomial coefficient as a power series. That is, the binomial
coefficient is just a polynomial

(6.2)
(
s
n

)
=

(s)n

n!
=

(−1)n

n!

n∑

k=0

(−1)k

[
n
k

]
sk

with coefficients given by
[
n
k

]
, the Stirling Number of the First Kind. The sign conven-

tion used here is that the Stirling numbers are given by the recursion relation[
n+ 1
k

]
= n

[
n
k

]
+

[
n

k − 1

]
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FIGURE 5.1. a(s) on the Imaginary Axis

This figure shows the real and imaginary parts of a(s) along the imaginary axis. The
function appears to be oscillatory. Note that the series expansion converges only with
great difficulty as one goes further out on the imaginary axis. XXX top be replaced by

phase plot of b(s), which should look similar.

making them all positive, and
[
n
0

]
= δn,0

This convention differs by a sign from the other common convention for the Stirling num-
bers s(n, k), as

[
n
k

]
= (−1)n−ks(n, k)

Straightforward substitution leads to

(6.3)
(−1)m

m!
γm =

∞∑
n=m

bn
n!

n∑

k=m

(−1)k

[
n
k

](
k
m

)

The operator

(6.4) Gnm = (−1)m+1
n∑

k=m

(−1)k

[
n
k

](
k
m

)
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FIGURE 5.2. Phase of a(s) on the Complex Plane

This figure shows the phase of a(s) on the right half of the complex plane, running along
the real-axis from -2 to +62 and the imaginary axis from -24 to about +24. The ribbing on
the left is entirely due to numerical errors, as the sums converge only with great difficulty.

The color scheme is such that black corresponds to −π, green to 0 and red to +π, on a
smooth scale. Thus, the red-to-black color discontinuities, correspond to a phase change

of 2π. Note that these terminate on zeros or poles; in this case, it appears that there is only
one pole, at s = −1, and all others are zeros. In particular, it appears that all of the zeros

occur on the real number line.
XXX to be replaced by plot of b(s), which should look similar.

is lower-triangular. There is an even simpler, amusing identity which may be obtained by
exchanging the order of integration:

(6.5)
(−1)m

m!
γm =

∞∑

k=m

(−1)k

(
k
m

) ∞∑

n=k

bn
n!

[
n
k

]

The first sum sum be recognized as the so-called binomial transform {sm} of a series {ak}

sm =
∞∑

k=m

(−1)k

(
k
m

)
ak

Such a transform is an involution, so that its inverse is given by

an =
∞∑

m=n

(−1)m

(
m
n

)
sm



englishNOTES RELATING TO NEWTON SERIES FOR THE RIEMANN ZETA FUNCTION 11

Applying this to the above leads to the amusing identity

ck
k!

=
∞∑

m=k

γm

m!

(
m
k

)
=

∞∑

n=k

bn
n!

[
n
k

]

where the constants ck correspond to derivatives of the zeta function at s = 0:

ζ(s) =
1

s− 1
+

∞∑

k=0

ck
(−s)k

k!

The relationship between the constants bn and the Stieltjes constants provide a possible
avenue for exploring the asymptotic behavior of the Stieltjes constants. This is explored in
the next section.

7. ASYMPTOTIC BEHAVIOR OF THE STIELTJES CONSTANTS

Perhaps one can capture the asymptotic behavior of the Stieltjes constants by under-
standing the asymptotic behavior of the operator Gnm. That this might be possible is
suggested by the relation

(7.1)
γm

m!
= −

∞∑
n=m

bn
n!
Gnm

with Gnm defined as in equation 6.4. Unfortunately, this proves rather hard. The rest of
this section explores the asymptotic behavior of Gnm.

The table below shows some of the low values of this operator:

Gnm 0 1 2 3 4 5 6 7 8 9
0 -1
1 1 -1
2 0 1 -1
3 0 1 0 -1
4 0 2 1 -2 -1
5 0 6 5 -5 -5 -1
6 0 24 26 -15 -25 -9 -1
7 0 120 154 -49 -140 -70 -14 -1
8 0 720 1044 -140 -889 -560 -154 -20 -1
9 0 5040 8028 64 -6363 -4809 -1638 -294 -27 -1

Several interesting patterns are clearly visible in this table. Most of these follow easily
from the recurrence relationship for the entries in this table. One has that

(7.2) Gnm = (n− 2)Gn,m−1 +Gn−1,m−1

which is easily proven by direct substitution and the application of the recurrence relations
for the Stirling numbers and binomial coefficients. The zeroth column follows from a
well-known relationship on the Stirling numbers:

(7.3) Gn,0 = −
n∑

k=0

(−1)k

[
n
k

]
= δn,1 − δn,0

The next column follows readily from the recursion relation 7.2; one has

(7.4) Gn,1 = (n− 2)!
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With only a bit more work, one finds that

(7.5) Gn,2 = (n− 2)! (Hn−2 − 1)

with Hn the harmonic numbers, as before. Asymptotically, for large n, one has

Hn = log n− γ +
1
2n

+O
(

1
12n2

)

The general asymptotic pattern that ensues may be better seen by defining

gnm =
Gnm

(n− 2)!

so that one has

gn,2 = log n+O(1)

for large n. The next column has the recursion relation

gn,3 = gn−1,3 +
Hn−3 − 1
n− 2

which is easily solvable as

(7.6) gn,3 =
n−2∑

k=1

Hk−1 − 1
k

= −1−Hn−2 +
n−3∑

k=1

Hk

k + 1

Although initially negative, the gn,3 eventually turn positive at n = 9. This general pattern,
of entries in a column starting negative and eventually turning positive, seems to be the
asymptotic behavior. Another representative case is shown in the graph 7.1.

The general pattern of the last row of the table appears to persist asymptotically: the
first few entries are positive, then swing sharply negative before trailing off to small values.
This is illustrated in the graphic 7.2.

The upshot of this exercise indicates that the asymptotic behavior of gn,m is difficult to
ascertain. Even if an expression were in hand, it would then have to be integrated with the
asymptotic behavior for the bn before the asymptotic behavior for the Stieltjes constants
were discernible.

8. OFF-TOPIC

Note. The following is off-topic, not sure what to do with it.

While on the topic of Umbral relations, the application of Newton’s divided differences
to the Riemann zeta function leads to the curious function

(8.1) Q(z) =
∞∑

n=0

(
n+ 1
z − 1

)
[ζ(n+ 2)− 1]

which has the curious properties that Q(n) = ζ(n) for all integers n ≥ 2. The pole is
absent: Q(1) = 1 and Q(n) = 0 ∀integers n ≤ 0. The analytic structure of Q(z) is
unclear.xxx Bessel function!?!
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FIGURE 7.1. gn,m as a function of n for fixed m = 6.

This figure shows gn,m = Gn,m/(n− 2)! as a function of n, at m fixed at m = 6. Figures
for larger values of m follow the same general shape, with the exception that the negative
dip is entered more slowly, is far deeper, and lasts considerably longer. Conjecturally, the

depth and length of the negative dip appears to be of order Γ(m).

9. FINITE DIFFERENCES AND THE NORLUND-RICE INTEGRAL

This section reviews the the definition of the Norlund-Rice integral, and its application
to finite differences and Newton series. Theorems required for convergence, and in partic-
ular, Carlson’s theorem, are briefly stated. The next section applies these techniques to the
evaluation of the finite differences of the Riemann zeta function.

Lemma 9.1. (Norlund-Rice ?)
Given a function f(s) holomorphic on a region containing the integers {n0, · · · , n},

then the finite differences of the sequence {f(k)} may be given an integral representation

n∑

k=n0

(
n
k

)
(−1)kf(k) =

(−1)n

2πi

∮

C
f(s)

n!
s(s− 1) · · · (s− n)

ds

where the contour of integration Cencircles the integers {n0, · · · , n} in a positive direction,
but does not include any of the integers {0, 1, · · · , n0 − 1}.

Proof. By residues.[?] ¤
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FIGURE 7.2. gnmfor n = 200

This figure shows gnm = Gnm/(n− 2)! as a function of m, for n = 200. This figure is
representative; figures for both larger and smaller n show the same general pattern: the
first few coefficients are positive, the next few are negative, in a more-or-less smoothly
varying fashion, decaying exponentially to zero for large m. The zero crossing shifts
rightwards very slowly for increasing n; conjecturally, it goes presumably as Γ−1(n).

Noteworthy seems the be the fact that the positive and negative swings are approximately
equal in magnitude.

Such sums commonly occur in the theory of finite differences. Given a function f(x),
one defines its forward differences at point x = a by

(9.1) ∆n [f ] (a) =
n∑

p=0

(−1)n−p

(
n

p

)
f(p+ a)

where
(
n
p

)
is the binomial coefficient. When one has only an arithmetic function or se-

quence of values fp = f(p), rather than a function of a continuous variable x, the above is
referred to as the binomial transform of the sequence.

The forward differences may be used to construct the umbral calculus analog of a Tay-
lor’s series:

(9.2) g(z + a) =
∞∑

n=0

∆n [f ] (a)
(z)n

n!
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where (z)n = z(z−1) . . . (z−n+1) is the Pochhammer symbol or falling factorial. When
the growth rate of f is suitably limited on the complex plane, then, by means of Carlson’s
Uniqueness theorem, g = f , and this series is known as the Newton series for f .

Theorem 9.2. (Carlson, 1914) If a function f(z) vanishes on the positive integers, and if
it is of exponential type, that is, if

f(z) = O(1)eτ |z|

for z ∈ C and for some real τ < ∞, and if furthermore its growth is bounded on the
imaginary axis, so that

f(iy) = O(1)e−c|y|

for c < π, then f is identically zero.

Proof. See [?]. [XXX this ref doesn’t actually contain proof] ¤

An example of a function that violates Carlson’s theorem is sinπz, which vanishes on
the integers, but has a growth rate of c = π along the imaginary axis.

10. ASYMPTOTIC ANALYSIS

This section describes the Norlund-Rice asymptotic analysis for the Riemann b_n.
Should be cut-n-paste from Flajolet’s early email ... To Do xxx.

11. DIRICHLET L-FUNCTIONS

The following section performs the asymptotic analysis for the Newton series of the
DirichletL-functions; this section briefly reviews their definition. The DirichletL-functions[?]
are defined in terms of the Dirichlet characters, which are group representation characters
of the cyclic group. They play an important role in number theory, and the Riemann
hypothesis generalizes to the L-functions. The Dirichlet characters are multiplicative func-
tions, and are periodic modulo k. That is, a character χ(n) is an arithmetic function of
an integer n, with period k, such that χ(n + k) = χ(n). A character is multiplicative,
in that χ(mn) = χ(m)χ(n) for all integers m,n. Furthermore, one has that χ(1) = 1
and χ(n) = 0 whenever gcd(n, k) 6= 1. The L-function associated with the character χis
defined as

(11.1) L(χ, s) =
∞∑

n=1

χ(n)
ns

All such L-functions may be re-expressed in terms of the Hurwitz zeta function as

(11.2) L(χ, s) =
1
ks

k∑
m=1

χ(m)ζ
(
s,
m

k

)

where k is the period of χ and ζ(s, q) is the Hurwitz zeta function, given by

(11.3) ζ(s, q) =
∞∑

n=0

1
(n+ q)s

Thus, the study of the analytic properties of the L-functions can be partially unified through
the study of the Hurwitz zeta function.
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12. FORWARD DIFFERENCES

In analogy to the study of the forward differences of the Riemann zeta function, the
remainder of this paper will concern itself with the analysis of the series given by

(12.1) Ln =
n∑

p=2

(−1)p

(
n
p

)
L(χ, p)

Because of the relation 11.2 connecting the Hurwitz zeta function to the L-function, it is
sufficient to study sums of the form

(12.2) An(m, k) =
n∑

p=2

(−1)p

(
n
p

)
ζ

(
p, m

k

)

kp

since

(12.3) Ln =
k∑

m=1

χ(m)An(m, k)

Converting the sum to the Norlund-Rice integral, and extending the contour to the half-
circle at positive infinity, and noting that the half-circle does not contribute to the integral,
one obtains

(12.4) An(m, k) =
(−1)n

2πi
n!

∫ 3
2+i∞

3
2−i∞

ζ
(
s, m

k

)

kss(s− 1) · · · (s− n)
ds

Moving the integral to the left, one encounters single pole at s = 0 and a double pole at
s = 1. The residue of the pole at s = 0 is

(12.5) Res(s = 0) = ζ
(
0,
m

k

)

where one has the curious identity in the form of a multiplication theorem for the digamma
function:

(12.6) ζ
(
0,
m

k

)
=
−1
πk

k∑
p=1

sin
(

2πpm
k

)
ψ

(p
k

)
= −B1

(m
k

)
=

1
2
− m

k

Here, ψ is the digamma function andB1is the Bernoulli polynomial of order 1. The double
pole at s = 1 evaluates to

(12.7) Res(s = 1) =
n

k

[
ψ

(m
k

)
+ ln k + 1−Hn−1

]

Combining these, one obtains

(12.8) An(m, k) =
(
m

k
− 1

2

)
− n

k

[
ψ

(m
k

)
+ ln k + 1−Hn−1

]
+ an(m, k)

The remaining term has the remarkable property of being exponentially small; that is,

(12.9) an(m, k) = O
(
e−
√

Kn
)

for a constant K of order m/k. The next section develops an explicit asymptotic form for
this term.
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13. SADDLE-POINT METHODS

The term an(m, k) is represented by the integral

(13.1) an(m, k) =
(−1)n

2πi
n!

∫ − 1
2+i∞

− 1
2−i∞

ζ
(
s, m

k

)

kss(s− 1) · · · (s− n)
ds

which resulted from shifting the integration contour past the poles. At this point, the func-
tional equation for the Hurwitz zeta may be applied. This equation is

(13.2) ζ
(
1− s,

m

k

)
=

2Γ(s)
(2πk)s

k∑
p=1

cos
(
πs

2
− 2πpm

k

)
ζ

(
s,
p

k

)

This allows the integral to be expressed as
(13.3)

an(m, k) = − n!
kπi

k∑
p=1

∫ 3
2+i∞

3
2−i∞

1
(2π)s

Γ(s)Γ(s− 1)
Γ(s+ n)

cos
(
πs

2
− 2πpm

k

)
ζ

(
s,
p

k

)
ds

It will prove to be convenient to pull the phase factor out of the cosine part; we do this now,
and write this integral as

an(m, k) = − n!
2kπi

k∑
p=1

exp
(
i
2πpm
k

)
×(13.4)

∫ 3
2+i∞

3
2−i∞

1
(2π)s

Γ(s)Γ(s− 1)
Γ(s+ n)

exp
(
−iπs

2

)
ζ

(
s,
p

k

)
ds

+c.c.

where c.c. means that i should be replaced by −i in the two exp parts.
For large values of n, this integral may be evaluated by means of the saddle-point

method. The saddle-point method, or method of steepest descents, may be applied when-
ever the integrand can be approximated by a sharply peaked Gaussian, as the above can be
for large n. More precisely, The saddle-point theorem states that

(13.5)
∫
e−Nf(x)dx ≈

√
2π

N |f ′′(x0)|e
−Nf(x0)

[
1− f (4)(x0)

8N |f ′′(x0)|2
+ · · ·

]

is an asymptotic expansion for large N . Here, the function f is taken to have a local
minimum at x = x0 and f ′′(x0) and f (4)(x0) are the second and fourth derivatives at the
local minimum.

To recast the equation 13.4 into the form needed for the method of steepest descents,
an asymptotic expansion of the integrands will need to be made for large n. After such an
expansion, it is seen that the saddle point occurs at large values of s, and so an asymptotic
expansion in large s is warranted as well. As it is confusing and laborious to simultaneously
expand in two parameters, it is better to seek out an order parameter to couple the two.
This may be done as follows. One notes that the integrands have a minimum, on the real
s axis, near s = σ0 =

√
πpn/k and so the appropriate scaling parameter is z = s/

√
n.

One should then immediately perform a change of variable from s to z. The asymptotic
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expansion is then performed by holding z constant, and taking n large. Thus, one writes

an(m, k) = − 1
2kπi

k∑
p=1

[
exp

(
i
2πpm
k

) ∫ σ0+i∞

σ0−i∞
ef(z)dz(13.6)

+exp
(
−i2πpm

k

) ∫ σ0+i∞

σ0−i∞
ef(z)dz

]

where f is the complex conjugate of f .
Proceeding, one has

(13.7) f(z) = log n! +
1
2

logn+ φ
(
z
√
n
)

and

(13.8) φ(s) = −s log
(

2πp
k

)
− i

πs

2
+ log

Γ(s)Γ(s− 1)
Γ(s+ n)

+O
((

p

k + p

)s)

where the approximation that ζ (s, p/k) = (k/p)s +O ((p/(k + p))s) for large s has been
made. More generally, one has

(13.9) log ζ(s) =
∞∑

n=2

Λ(n)
ns log n

where Λ(n) is the von Mangoldt function. (XXX What about Hurwitz?) The asymptotic
expansion for the Gamma function is given by the Stirling expansion,

(13.10) log Γ(x) =
(
x− 1

2

)
log x− x+

1
2

log 2π +
∞∑

j=1

B2j

2j(2j − 1)x2j−1

andBk are the Bernoulli numbers. Expanding toO(1/n) and collecting terms, one obtains

f(z) =
1
2

log n− z
√
n

[
log

2πp
k

+ i
π

2
+ 2− 2 log z

]

+ log 2π − 2 log z − z2

2
(13.11)

+
1

6z
√
n

[
10 + z2

]
+

1
2n

[
1− z2

2
− z4

6
+

73
72z2

]
+O

(
n−3/2

)

The saddle point may be obtained by solving f ′(z) = 0. To lowest order, one obtains
z0 = (1+ i)

√
πp/k. To use the saddle-point formula, one needs f ′′(z) = 2

√
n/z+O(1).

Substituting, one directly obtains

∫ σ0+i∞

σ0−i∞
ef(z)dz =

(
2π3pn

k

)1/4

eiπ/8 exp

(
−(1 + i)

√
4πpn
k

)
(13.12)

+O
(
n−1/4e−2

√
πpn/k

)



englishNOTES RELATING TO NEWTON SERIES FOR THE RIEMANN ZETA FUNCTION 19

while the integral for f is the complex conjugate of this (having a saddle point at the
complex conjugate location). Inserting this into equation 13.6 gives

an(m, k) =
1
k

(
2n
π

)1/4 k∑
p=1

(p
k

)1/4

exp

(
−

√
4πpn
k

)
×(13.13)

cos

(√
4πpn
k

− 5π
8
− 2πpm

k

)

+O
(
n−1/4e−2

√
πpn/k

)

For large n, only the p = 1 term contributes significantly, and so one may write

an(m, k) =
1
k

(
2n
πk

)1/4

exp

(
−

√
4πn
k

)
×(13.14)

cos

(√
4πn
k

− 5π
8
− 2πm

k

)

+O
(
n−1/4e−2

√
πn/k

)

which demonstrates the desired result: the terms an are exponentially small.
The consistency of these results, with respect to the previous derivation for the Riemann

zeta can be checked inn several ways. First, one may make the direct substitution m =
k = 1 to obtain

bn = an(1, 1) =
(

2n
π

)1/4

exp
(
−
√

4πn
)

cos
(√

4πn− 5π
8

)
(13.15)

+O
(
n−1/4e−2

√
πn

)

Alternately, the so-called “multiplication theorem” for the Hurwitz zeta states that

(13.16)
k∑

m=1

ζ
(
s,
m

k

)
= ksζ(s)

from which one may deduce both that

(13.17)
m∑

k=1

An(m, k) =
n∑

p=2

(−1)p

(
n

p

)
ζ(p)

and that

(13.18)
m∑

k=1

an(m, k) = bn

In particular, the above must hold order by order in the asymptotic expansion. The correct-
ness of the expansion given by equation 13.13 with regards to this identity may be readily
verified by substitution. An important special case of equation 13.18 is the relation

(13.19) an(2, 2) = bn − an(1, 2) =
n∑

p=2

(−1)p

(
n

p

) (
1− 2−p

)
ζ(p)
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which appears often in the literature [Coffey]. It has the asymptotic expansion

an(2, 2) =
1
2

2∑
p=1

(np
π

)1/4

exp
(
−

√
2πnp

)
cos

(√
2πnp− 5π

8

)
(13.20)

+O
(
n−1/4e−

√
2πn

)

XXX Coffey’s sum is actually An(1, 2) !!?? viz the Dirichlet eta ??

14. MORE L-FUNCTIONS

We conclude by briefly returning to the structure of the Dirichlet L-functions. The L-
function coefficients defined in equation 12.1 are now given by

(14.1) Ln =
k∑

m=1

χ(m)An(m, k)

Writing

(14.2) An = Bn + an

so that Bn(m, k)represents the non-exponential part, one may state a few results. For the
non-principal characters, one has

∑k
m=1 χ(m) = 0 and thus, the first term simplifies to

(14.3)
k∑

m=1

χ(m)Bn(m, k) =
1
k

k∑
m=1

χ(m)
[
m− nψ

(m
k

)]

For the principal character χ1, one has
∑k

m=1 χ1(m) = ϕ(k) with ϕ(k) the Euler Totient
function. Thus, for the principal character, one obtains

k∑
m=1

χ1(m)Bn(m, k) = −ϕ(k)
[
1
2

+
n

k
(ln k + 1−Hn−1)

]
(14.4)

+
1
k

k∑
m=1

χ1(m)
[
m− nψ

(m
k

)]

By contrast, the exponentially small term invokes a linear combination of Gauss sums.
The Gauss sum associated with a character χ is

(14.5) G(n, χ) =
∑

m modk

χ(m)e2πimn/k

and so, to leading order
k∑

m=1

χ(m)an(m, k) =
1
2k

k∑
p=1

(
2pn
πk

)1/4

exp

(
−

√
4πpn
k

)
×

[
exp i

(
5π
8
−

√
4πpn
k

)
G(p, χ)(14.6)

+exp−i
(

5π
8
−

√
4πpn
k

)
G(−p, χ)

]

+O
(
n−1/4e−2

√
πn/k

)
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The above expression simplifies slightly for the principle character, since one has the iden-
tities

(14.7) G (1, χ1) = µ(k)

with µ(k) the Mobius function and more generally,

(14.8) G (p, χ1) =
ϕ(k)µ

(
k

(p,k)

)

ϕ
(

k
(p,k)

)

That’s all. Not sure what more to say at this point.

Note. TODO – The Hurwitz zeta can be avoided entirely by working directly with the func-
tional equation for the L-functions, as given by Apostol[?, Chapter 12, Theorem 12.11].
The direct form seems to imply some sort of result/constraint on the p 6= 1 terms in the
expansion. It also suggests that most of the derivation above could be made clearer by
assuming a generic functional equation, and stating results in terms of that. (e.g. assume
Selberg-class type functional equation). The only tricky part is understanding the asymp-
totic behavior of zeta for large s.

15. REVIEW OF DIRICHLET SERIES

The following sections consider sums with ζ(s) in the denominator. There are many
Dirichlet series that achieve this. The canonical one, involving the Mobius function is

(15.1)
∞∑

n=1

µ(n)
ns

=
1
ζ(s)

But there is also one for the Euler Phi function:

(15.2)
∞∑

n=1

φ(n)
ns

=
ζ(s− 1)
ζ(s)

The Liouville function:

(15.3)
∞∑

n=1

λ(n)
ns

=
ζ(2s)
ζ(s)

The von Mangoldt function

(15.4)
∞∑

n=1

Λ(n)
ns

= −ζ
′(s)
ζ(s)

There are a dozen others that can be readily found in introductory textbooks and/or the
web.

One may construct in a very straightforward way the Dirichlet series for 1/ζ(s − a)
for any complex a, as well as 1/ζ(2s − a). These can be constructed by a fairly trivial
application of Dirichlet convolution, together with the Mobius inversion formula. In short,
one has an old, general theorem that

(15.5)
∞∑

n=1

(f ∗ g)(n)
ns

=
∞∑

n=1

f(n)
ns

∞∑
m=1

g(m)
ms
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where f ∗ g is the Dirichlet convolution of f and g:

(15.6) (f ∗ g)(n) =
∑

d|n
f(d)g

(n
d

)

Since Dirichlet convolution is invertible whenever f(1) 6= 1 (and/or g(1) 6= 1), one may
multiply and divide Dirichlet series with impunity, more or less.

I haven’t yet seen a way of building 1/ζ(αs+ β), or more complicated expressions.
Perhaps the most important generalization is that for the Dirichlet L-functions, since

these are the ones for which the GRH applies. Specifically, one has

(15.7)
∞∑

n=1

µ(n)χ(n)
ns

=
1

L(s, χ)

where χ is the Dirichlet character.

16. NUMERIC EXPLORATION OF DIRICHLET SERIES

This section provides a numeric exploration of the finite differences of the various
Dirichlet series given above. Consider first

(16.1) dn =
n∑

k=2

(−1)k

(
n
k

)
1

ζ(k)

After a numerical examination of dn in the range of 2 ≤ n ≤ 1000, one would be tempted
to incorrectly conclude that limn→∞ dn = 2; this numerical behavior is shown in the
graphs 16.1 and 16.2. Exploring numerically into the higher range 1000 ≤ n ≤ 50000,
one discovers that dn is oscillatory. The explanation for this behavior is presented below.

The asymptotic behavior of the dn can be obtained by the corresponding Norlund-Rice
integral. That is, one writes

(16.2) dn =
(−1)n−1

2πi

∫ 3/2+i∞

3/2−i∞

1
ζ(s)

n!
s(s− 1)(s− 2) · · · (s− n)

ds

The contour may be closed to the left, and the Cauchy-Riemann theorem applied. The
integral has poles at zero, at the “trivial zeroes” −2k, and at the non-trivial zeroes ρ =
σ + iτ . Thus, one has

(16.3) dn = − 1
ζ(0)

+
∞∑

k=1

n! (2k − 1)!
(2k + n)!

1
ζ ′(−2k)

+ cn

where the non-trivial zeros contribute

cn = (−1)n
∑

ρ

n!
ρ(ρ− 1) · · · (ρ− n)

1
ζ ′(ρ)

Substituting for

ζ ′(−2k) = (−1)k (2k)!
2(2π)2k

ζ(2k + 1)

one has

(16.4) dn = − 1
ζ(0)

+
∞∑

k=1

(−1)k n!
(2k + n)!

(2π)2k

kζ(2k + 1)
+ cn

The value of zeta at zero, ζ(0) = −1/2 accounts fully for the low-n behavior seen in
the numerical sums. The next few terms in the k summation provide corrections that die
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FIGURE 16.1. Graph of dn for smaller n

The red graphic shows the numerically computed values for

dn =
n∑

k=2

(−1)k

(
n
k

)
1

ζ(k)

in the range of 2 ≤ n ≤ 60. It strongly behavior suggests an asymptotic approach to
dn → 2. This numeric conclusion is incorrect, as demonstrated in the text. The small-n

behavior is reasonably approximated by the analytic form

2− 4π2

(n+ 1)(n+ 2)ζ(3)
= 2− 32.842386 · · ·

(n+ 1)(n+ 2)
which is graphed as the green line.

away rapidly for large n, and thus aren’t particularly interesting. The contribution of the
non-trivial zeros is more surprising. One has

(16.5) cn = −
∑

ρ

Γ(n+ 1)Γ(−ρ)
Γ(n− ρ+ 1)

1
ζ ′(ρ)

For large n, the Stirling approximation may be applied. The sum has two distinct regimes.
Write ρ = σ + iτ with σ = 1/2 if the Riemann Hypothesis is assumed. One may then
consider the sum for the case where τ ¿ n, and the case where this does not hold. Writing
cn = αn + βn with αn for the first few terms of the sum, and βn for the remaining terms,
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FIGURE 16.2. Graph of dn for intermediate n

The above figure shows a graph of n2(2− dn) in the range of 2 ≤ n ≤ 500. As with the
previous graphic, it strongly but incorrectly suggests that dn → 2 in the limit of large n.

That this is not the case can be discovered by pursuing larger n. The value being
approached is 4π2/ζ(3) = 32.842386 . . .

one then has, after applying the Stirling approximation, that

(16.6) αn = −
[
1 +O

(
1
n

)] ∑
τ¿n

(n+ 1)σ Γ (−σ − iτ)
ζ ′ (σ + iτ)

eiτ log(n+1)

Assuming the Riemann hypothesis, so that σ = 1/2, one has that αn = O (
√
n). This

is suppressed by a small factor, since
∣∣Γ( 1

2 + iτ)
∣∣ ∼ e−τπ/2. Clearly, αn is also slowly

oscillatory. The remaining terms take the form

βn = −
[
1 +O

(
1
n

)]√
2π

∑

τ&n

√
τ + in

τn
×

exp
[
n+ 1

2
log

(
n2

n2 + τ2

)
+
σ

2
log

(
1 +

n2

τ2

)
− τ arctan

n

τ

]
×

exp i
[
(n+ 1) arctan

τ

n
+
τ

2
log

(
1 +

n2

τ2

)]
× 1
ζ ′(ρ)

Since one has logn2/(n2 + τ2) < 0, one has that the remaining terms in the sum are
exponentially small, provided that ζ ′(ρ) never becomes arbitrarily small. Since the number
of non-trivial zeros of the Riemann zeta does not increase exponentially, the sum can be
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estimated, and one concludes that

(16.7) βn = O (
e−Kn

)

for some K > 0. The value of K can be bounded away from zero, simply by arranging
which terms are grouped into the finite sum αn, and which are not. Thus, for large n, the
contribution of βn can be ignored, and the asymptotic form of dn is given by

dn = 2 + αn +O
(

1√
n

)

where the Riemann hypothesis is assumed, so that a term
√
n can be brought out of the αn.

Since one has
∣∣Γ( 1

2 + iτ)
∣∣ ∼ e−τπ/2, each term contributing to αn is considerably smaller

than the last. Summing together the zeros above and below the real axis, one has

(16.8) dn = 2− 2
√
n+ 1

∑
nÀτ>0

<
[

Γ
(− 1

2 − iτ
)
eiτ log(n+1)

ζ ′
(

1
2 + iτ

)
]

The leading contribution toαn is given by the first zero at ρ = 0.5±i14.1347251417 . . .,
followed by ρ = 0.5 + i21.02203963877. Then one has

Γ (−0.5− i14.1347251417) = 4.036348365× 10−11 × e−i 2.850233468

Γ (−0.5− i21.02203963877) = 5.436324603× 10−16 × ei 2.572808318

ζ ′ (0.5 + i14.1347251417) = 0.783296 + i 0.1247

ζ ′ (0.5 + i21.02203963877) = 1.109295− i 0.2487297

Taking only the contribution from the first zero, one has

(16.9) dn ≈ 2−√n+ 1
[
1.01779× 10−10 cos (14.1347 log (n+ 1)− 3.0081)

]

which may be seen to fit the data very well, as shown in figure 16.3.

16.1. Equivalence to the Riemann Hypothesis. What is curious about this result is that,
if the Riemann Hypothesis holds, then there are no further corrections to this asymptotic
behavior. The first zero gives the dominant term, and the second and subsequent zeroes
give corrections that are at least 10−5 smaller, but of the same order in n. If there is a
non-trivial zero that is not on the critical line, then it will contribute to equation 16.6 with
a value of σbroke 6= 1/2, and so one will instead have dn = O (nσbroke). However, the
contribution of such a zero would be strongly suppressed, by a value of e−πτ/2. Since
the Riemann hypothesis has been verified to τ ∼ 1012, the deviation from the square-root
behavior would be numerically inaccessible. At any rate, the above sketch demonstrates
that dn = O (

√
n) is equivalent to the Riemann Hypothesis.

This conclusion generalizes almost trivially to the Generalized Riemann Hypothesis for
the Dirichlet L-functions. Each of the equations in the previous section hold under the
substitution of L′(s, χ) for ζ ′(s). The only tricky step of the proof, which was glossed
over and left unsupported above, was the assumption that ζ ′(ρ) is never small, that is,
that its bounded away from zero, so that the argument about the non-importance of the βn

holds. Provided that one can show this (and similarly, that L′(s, χ) is never small), then
the argument follows through for the Generalized Riemann Hypothesis as well.

The above casual derivation can be inverted to show that the Riemann Hypothesis im-
plies that the derivatives are bounded away from zero. It may be rigirously shown[?] that
the RH is equivalent to having dn = O (

n1/2+ε
)

for all ε > 0. To reconcile this with the
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FIGURE 16.3. Asymptotic behavior of dn

This graphic charts the value of (n+ 1)(n+ 2)(2− dn) in the range of
500 ≤ n ≤ 33000. Rather than approaching a limit for large n, there are a series of

oscillations that grow ever larger. The red line shows the numerically evaluated value of
dn, while the green line graphs the analytically derived

dn ≈ 2−√n+ 1
[
1.01779× 10−10 cos (14.1347 log (n+ 1)− 3.0081)

]

As can be seen, the fit is excellent.

above sketch that dn = O (
√
n), one must conclude that, for all but possibly a finite set of

zeroes ρ, one must have

|ζ ′(ρ)| > O
(
e−τπ/2

)

as otherwise the estimates for equation 16.7 would fail.

16.2. Totient series. The finite differences for the other series appear to show a similar
pattern, except that the scale of the leading order is different. Consider, for example,

(16.10) dϕ
n =

n∑

k=3

(−1)k

(
n
k

)
ζ(k − 1)
ζ(k)

with the superscript ϕ indicating that the corresponding Dirichlet series involves the totient
function ϕ. For smaller values of n, numeric analysis suggests that dϕ

n = O (
n2 logn

)
, as

shown in graph 16.4.
The integrand of the corresponding Norlund-Rice integral is regular at s = 1 and has a

simple pole at s = 0, and a double pole at s = 2. In most other respects, it resembles the
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FIGURE 16.4. Graph of dϕ
n

A graph of dϕ
n for 3 ≤ n ≤ 100 shows rapidly increasing behavior.

integral for the Mobius series. The residue of the pol at s = 0 contributes

Res (s = 0) = −ζ(−1)
ζ(0)

= −1
6

while that at s = 2 contributes

Res (s = 2) = Γ (n+ 1)
d

ds

[
(s− 2)2ζ(s− 1)Γ(−s)
ζ(s)Γ(n− s+ 1)

]∣∣∣∣
s=2

=
3n(n− 1)

π2

[
3
2
− γ + log (2π)− 12 logA− ψ(n− 1)

]

Here, the constantA is the Glaisher-Kinkelin constantA = 1.28242712910062263687534256886979 . . ..
and ψ(n) is the digamma function, which is just the harmonic number at the integers:

ψ(n) = −γ +
n−1∑

k=1

1
k

As before, the residues of the trivial zeros contribute O(1/n2) to the sum. These are

Res (s < 0) =
n!

2π2

∞∑

k=1

(2k + 1)!
(2k + n)!

ζ(2k + 2)
kζ(2k + 1)
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Thus, the analytic development indicates that

(16.11) dϕ
n = Res (s ≤ 2)−

∑
ρ

Γ(n+ 1)Γ(−ρ)
Γ(n− ρ+ 1)

ζ(ρ− 1)
ζ ′(ρ)

for the series.
It seems that, at least for the small zeroes, one has that ζ(ρ− 1) ∼ 1, and so, just as in

the Mobius function sums, one has oscillatory behavior given by
(16.12)

dϕ
n − Res (s ≤ 2) = 2

√
n+ 1

∑
nÀτ>0

<
[
Γ

(
−1

2
− iτ

)
eiτ log(n+1) ζ

(− 1
2 + iτ

)

ζ ′
(

1
2 + iτ

)
]

where, for the first zero,

ζ (−0.5 + i14.1347251417) = −1.184474313− i 0.3142933325

so that the oscillations are given by
(16.13)
dϕ

n − Res (s ≤ 2) ≈ √
n+ 1

[
1.247262× 10−10 cos (14.1347 log (n+ 1)− 5.89033)

]

A graph comparing the two sides of this equation is shown in figure 16.5.

16.3. Liouville series. Let

(16.14) dλ
n =

n∑

k=2

(−1)k

(
n
k

)
ζ(2k)
ζ(k)

be the series corresponding to the Liouville function. The integrand of the corresponding
Norlund-Rice integral is regular at s = 1 and has a simple pole at 2s = 1 and another at
s = 0. In other respects, it resembles the integral formulation for the Mobius series. The
simple pole contributes a term of O(

√
n). Curiously, there are no poles from the trivial

zeros, as these are balanced out by the numerator. The contribution of the non-trivial
zeroes to the sum may be estimated as in the Mobius sum.

More precisely, the residue of the pole at s = 0 provides a term

Res (s = 0) = −1

The residue of the pole at s = 1/2 provides a term

Res
(
s =

1
2

)
= −

√
π

ζ
(

1
2

) Γ (n+ 1)
Γ

(
n+ 1

2

)

where

ζ

(
1
2

)
≈ −1.4603450880958681288499915252 . . .

This residue accounts very well for the behavior of dλ
n, as demonstrated in figure 16.6.

The full behavior of the dλ
n should be given by

(16.15) dλ
n = −

√
π

ζ
(

1
2

) Γ (n+ 1)
Γ

(
n+ 1

2

) −
∑

ρ

Γ(n+ 1)Γ(−ρ)
Γ(n− ρ+ 1)

ζ(2ρ)
ζ ′(ρ)

Applying the Stirling approximation, one obtains
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FIGURE 16.5. Asymptotic behavior of dϕ
n

This graphic shows the asymptotic behavior of dϕ
n after the leading residues are

subtracted. The red line shows

dϕ
n − Res (s = 2)− Res (s = 0)− Res (s = −2)

The green line shows the contribution of the first non-trivial zero, that is, the green line
shows√

n+ 1
[
1.247262× 10−10 cos (14.1347 log (n+ 1)− 5.89033)

]

As may be seen, the match is excellent.

dλ
n = Res (s = 0) + Res

(
s =

1
2

)

−2
√
n+ 1

∑
nÀτ>0

<
[
Γ

(
−1

2
− iτ

)
eiτ log(n+1) ζ (1 + 2iτ)

ζ ′
(

1
2 + iτ

)
]

Using

ζ (1 + i2× 14.1347251417) = 1.836735353402834− i0.6511975965222686

one then expects

(16.16)

dλ
n ≈ Res (s = 0)+Res

(
s =

1
2

)
+
√
n+ 1

[
1.98342× 10−10 cos (14.1347 log (n+ 1)− 3.3488)

]
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FIGURE 16.6. dλ
n for the Liouville function

This figure shows the basic behavior for the finite differences dλ
n corresponding to the

Liouville function, plotted in red. For comparison, plotted in green, is the value of

−1−
√
π

ζ
(

1
2

) Γ (n+ 1)
Γ

(
n+ 1

2

)

Clearly, this provides an excellent fit for the low-order behavior of the series.

A graph of this is shown in figure 16.7; again, the fit is excellent.
As is the case for the Mobius sums, the asymptotic behavior of dλ

n = O(
√
n) implies

and is implied by the Riemann hypothesis, provided that the coefficient ζ (1 + 2iτ) /ζ ′
(

1
2 + iτ

)
is bounded away from zero.

17. RELATION TO LITERATURE

The following is a list of Newton series or other suggestive sums or integrals that occur
in the literature, both modern and older. Many of these may be amenable to the techniques
given above, or have results that follow immediately from the above.

17.1. Reciprocal Riemann Zeta. The Riemann zeta function has regularly-spaced zeros
along the negative real axis. Thus, the reciprocal has poles at the (even) integers, and thus
resembles the Norlund-Rice integrand. Viz:

∮

C

ds

ζ(s)
∼

∑(
n
k

)
1

ζ ′(2n)
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FIGURE 16.7. Asymptotic form of dλ
n

This figure shows a graph of the series dλ
n with the residue of the pole at s = 1/2

removed. That is, the red line shows

dλ
n + 1 +

√
π

ζ
(

1
2

) Γ (n+ 1)
Γ

(
n+ 1

2

)

for the range of 110 ≤ n ≤ 6000. The green line is a graph of√
n+ 1

[
1.98342× 10−10 cos (14.1347 log (n+ 1)− 3.3488)

]

As can be seen, the fit is very good, and improves for large n.

where the contour encircles n poles. Not clear how to turn the integral into something
suitable for a saddle-point method.

17.2. Maslanka/Baez-Duarte. A similar sum appears in [?] as

cn =
n∑

k=0

(−1)k

(
n
k

)
1

ζ(2k + 2)

and furthermore, it is claimed that

cn ¿ n−3/4+ε∀ε > 0

is equivalent to RH. Note the summand is just a ratio of Bernoulli numbers and powers of
π. The NR integral is

cn =
(−1)n

2πi

∫ −1/4+i∞

−1/4−i∞

1
ζ(2s+ 2)

n!
s(s− 1) · · · (s− n)

ds+
δn0

2
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FIGURE 17.1. Log integrand

Graph of log and arg of integrand for n = 6. The bumps at 7,11,13 correspond to
Riemann zeros at 14, 21, 26. For large n, the real part does not become more parabolic,
but retains roughly the same shape. However, for large n, the phase runs more rapidly,

pushing apart the hilltops.

The n = 0 Cauchy integral has an contribution of 1/2 coming from the semi-circular
contour at infinity on the right, which vanishes for n 6= 0. The integrand is suggests
a saddle point, bounded by poles at s = 0,−2 while getting obviously small for large
imaginary s. The problem is the the pole at s = 0 has a residue of opposite sign from that
at s = −2 and, so, if we are lucky, there is an inflection point between these two locations,
viz. a point where the first derivative vanishes.

I’m confused at this point. It appears that I can push the contour at σ = −1/4 further to
the left, which amazingly passes me through the critical strip without changing the value
of the integral! I guess that the contribution of all of residues of the poles at the zeros of
ζ must add up to zero. I didn’t know this, I presume it follows trivially(??) by complex
conjugation.

17.3. Hasse-Knoppe. Helmut Hasse and Conrad Knoppe (1930) give a series for the Rie-
mann zeta is convergent everywhere on the complex s-plane, (except at s = 1):

ζ(s) =
1

1− 21−s

∞∑
n=0

1
2n+1

n∑

k=0

(−1)k

(
n
k

)
(k + 1)−s

It would be curious to explore the associated integral. I’m particularly intrigued by the
power-of-2 sum.
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17.4. Hasse for Hurwitz. Hasse also gave a similar, globally convergent, expansion for
the Hurwitz zeta:

ζ(s, q) =
1

s− 1

∞∑
n=0

1
n+ 1

n∑

k=0

(−1)k

(
n
k

)
(q + k)1−s

Same question as above.

17.5. Dirichlet Beta. The Dirichlet beta is given by

β(s) =
∞∑

n=0

(−1)n

(2n+ 1)s

and has a functional equation

β(s) =
(π

2

)s−1

Γ(1− s) cos
πs

2
β(1− s)

This is just the L-function for the second character modulo 4, so we already have this sum,
and can read it right off. XXX Do this.

17.6. L-function of principal character modulo 2. The L-function of the principal char-
acter modulo 2 is given by

L(χ1, s) =
(
1− 2−s

)
ζ(s)

and we already have expansions for this. The Newton series for this appears in [?] as
equation 4.11 and also in [?] equation 16 as the sum

S1(n) =
n∑

k=2

(−1)k

(
n
k

) (
1− 2−k

)
ζ(k)

Coffey states the theorem that

S1(n) ≥ n

2
lnn+ (γ − 1)

n

2
+

1
2

We can read off the full result instantly from the result on the L-functions. XXX Do this.

17.7. Another Coffey sum. Coffey [?] shows interest in another sum:

S3(n) =
n∑

k=2

(−1)k

(
n
k

)
2kζ(k)

The reason for the interest in this sum is unclear.

17.8. A Li Criterion-related sum. Bombieri [?], Lagarias [?] and Coffey [?] provides a
sequence ηkwhich seems to be of the form exp−k and thus suggests that the saddle-point
techniques should be applicable. These appear in Lagarias equation 4.13 and in Coffey
equation 10 as

λn = −
n∑

k=1

(
n
k

)
ηk−1 + S1(n) + 1− n

2
(γ + lnπ + 2 ln 2)

where S1(n)is given above, and λn are the Li coefficients

λn =
1

(n− 1)!
dn

dsn
sn−1 ln ξ(s)

∣∣∣∣
s=1

and
ξ(s) =

1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)
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Part of what is curious is that the ηk appear in an expression similar to the what is seen for
the Stieltjes constants, but involve the von Mangoldt function.

17.9. Prodinger, Knuth. Prodinger considers a curious sum, and provides an answer;
Knuth [?] had previously provided a related sum. Doesn’t seem to be much to do here,
as the leading terms are already given, and, from the comp-sci point of view, these are
enough. The motivation for providing the exponentially small terms is uncertain. The
Prodinger sum is [?]:

S =
n−1∑

k=1

(
n
k

)
Bk

2k − 1
' − log2 n+

1
2

+ δ2 (log2 n)

where Bk are the Bernoulli numbers. The Norlund-Rice integral is

S =
1

2πi

∫ 1/2+i∞

1/2−i∞

(−1)nn!
((s− 1)(s− 2) · · · (s− n)

· ζ(1− s)
2s − 1

ds

The poles due to 2z − 1 lead to the curious term in the asymptotic expansion:

δ2(x) =
1

log 2

∑

k 6=0

ζ (1− χk) Γ (1− χk) e2πikx

where

χk =
2πki
log 2

The Knuth sums are similar, but different.

17.10. Lagarias. Lagarias [?] has a a sum over the Hurwitz zeta, equation 5.5:

T (n, z) =
n∑

k=1

(−1)k

(
n
k

)
1
2k
ζ(k, z + 1)

We’ve already computed this sum, so should be able to read off an answer directly, and
improve significantly on Lagarias results. XXX Do this. XXX Actually, not quite ... the
best from above is

An(m, 2) =
n∑

k=2

(−1)k

(
n
k

)
1
2k
ζ

(
k,
m

2

)

which misses the general z. I believe saddle point analysis can be generalized to handle
the Lagarias sum.

18. CONCLUSIONS/COMMENTS

Note. Not sure about the following ... interesting and suggestive but don’t see where it
leads.

The paper concludes by noting the general resemblance of the asymptotic behavior to
that of two other famous number-theoretic sequences. The partition function pnis given by
Euler’s infinite product[?]:

∞∑
n=0

pnx
n =

∞∏
m=1

1
1− xm

and for large n, takes on the asymptotic form

pn ∼ expK
√
n

4n
√

3
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with K = π
√

2/3. This form was given by Hardy and Ramanujan [ref] and Uspensky
[ref], with a full series valid to all orders given by Rademacher[ref]. There is a similar
asymptotic form for the Fourier coefficients of the modular j-invariant,

j(τ) = e−2πiτ +
∞∑

n=0

cne
2πinτ

where the coefficients take on the asymptotic values

cn ∼ exp 4π
√
n

n3/4
√

2
which was given by Petersson [ref][?]. The appearance of an asymptotic factor in the form
of eK

√
n here and in the Newton series is suggestive. However, unlike the pn and the cn,

the values 1/bn are not integers; nor is the Fourier series
∑

n x
n/bn a modular form.

19. APPENDIX

A related but simpler integral can be found in Tom M. Apostol, Introduction to Analytic
Number Theory, Lemma 3, Chapter 13[?]. The integral resembles equation 13.1. Re-
expressed so as to heighten the resemblance, it states (XXX changed notation here too,
this is probably/certainly wrong too.)

bn(m) =
(−1)n+1

2πi
n!

∫ − 1
2+i∞

− 1
2−i∞

1
mss(s− 1) · · · (s− n)

ds

=
1

2πi
n!

∫ 1
2+i∞

1‘
2 −i∞

ms

s(s+ 1) · · · (s+ n)
ds

=

{(
1− 1

m

)n for m ≥ 1
0 for m < 1

(19.1)

A naive application of this identity to the integrals in this paper leads to divergent formal
sums. XXX clarify this statement.
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